208. Implement Trie (Prefix Tree)
https://leetcode.com/problems/implement-trie-prefix-tree/description/
Implement a trie with insert
, search
, and startsWith
methods.
Example:
Trie trie = new Trie();
trie.insert("apple");
trie.search("apple"); // returns true
trie.search("app"); // returns false
trie.startsWith("app"); // returns true
trie.insert("app");
trie.search("app"); // returns true
Note:
You may assume that all inputs are consist of lowercase letters
a-z
.All inputs are guaranteed to be non-empty strings.
Thoughts
Trie是一棵树,每个子结点代表一个字符,当有单词包含它并后面还有字符时,相应的子节点指向后面的一个字符。每个结点还有一个flag用来记录它是否是某单词的终点。搜索一个单词时就顺着指针依次往下遍历, 当为null表明该单词不在里头。创建时也是这么遍历,为null时继续按照word往下插。搜索和创建时间复杂度为O(l), l为单词长度. 空间复杂度为O(lN)。Trie 并不一定比hash map快,但一般会有更高的memory。Trie的优势在于有很多相同prefix的词,有固定的查询时间 (hashmap 的collision不可预料),以及能方便的实现自动完成等功能。
Code
# Implement a trie with insert, search, and startsWith methods.
#
# Example:
#
#
# Trie trie = new Trie();
#
# trie.insert("apple");
# trie.search("apple"); // returns true
# trie.search("app"); // returns false
# trie.startsWith("app"); // returns true
# trie.insert("app");
# trie.search("app"); // returns true
#
#
# Note:
#
#
# You may assume that all inputs are consist of lowercase letters a-z.
# All inputs are guaranteed to be non-empty strings.
#
# Related Topics Design Trie
# leetcode submit region begin(Prohibit modification and deletion)
class Trie(object):
def __init__(self):
"""
Initialize your data structure here.
"""
self.trie = {}
def insert(self, word):
"""
Inserts a word into the trie.
:type word: str
:rtype: None
"""
cur = self.trie
for c in word:
if c not in cur:
cur[c] = {}
cur = cur[c]
cur['#'] = True
def search(self, word):
"""
Returns if the word is in the trie.
:type word: str
:rtype: bool
"""
cur = self.trie
for c in word:
if c not in cur:
return False
cur = cur[c]
return '#' in cur
def startsWith(self, prefix):
"""
Returns if there is any word in the trie that starts with the given prefix.
:type prefix: str
:rtype: bool
"""
cur = self.trie
for c in prefix:
if c not in cur:
return False
cur = cur[c]
return True
# Your Trie object will be instantiated and called as such:
# obj = Trie()
# obj.insert(word)
# param_2 = obj.search(word)
# param_3 = obj.startsWith(prefix)
# leetcode submit region end(Prohibit modification and deletion)
class Trie {
static final int ALPHABET_SIZE = 26;
static class TrieNode {
TrieNode[] children = new TrieNode[ALPHABET_SIZE];
boolean isEndOfWord;
TrieNode() {
isEndOfWord = false;
for (int i = 0; i < ALPHABET_SIZE; i++) {
children[i] = null;
}
}
}
static TrieNode root;
/** Initialize your data structure here. */
public Trie() {
root = new TrieNode();
}
/** Inserts a word into the trie. */
public void insert(String word) {
int index;
TrieNode node = root;
for (int i = 0; i < word.length(); i++) {
index = word.charAt(i) - 'a';
if (node.children[index] == null) {
node.children[index] = new TrieNode();
}
node = node.children[index];
}
node.isEndOfWord = true;
}
/** Returns if the word is in the trie. */
public boolean search(String word) {
TrieNode node = root;
for (int i = 0; i < word.length(); i++) {
int index = word.charAt(i) - 'a';
if (node.children[index] == null) {
return false;
}
node = node.children[index];
}
return node.isEndOfWord;
}
/** Returns if there is any word in the trie that starts with the given prefix. */
public boolean startsWith(String prefix) {
TrieNode node = root;
for (int i = 0; i < prefix.length(); i++) {
int index = prefix.charAt(i) - 'a';
if (node.children[index] == null) {
return false;
}
node = node.children[index];
}
return true;
}
}
/**
* Your Trie object will be instantiated and called as such:
* Trie obj = new Trie();
* obj.insert(word);
* boolean param_2 = obj.search(word);
* boolean param_3 = obj.startsWith(prefix);
*/
Analysis
搜索和创建时间复杂度为O(l), l为单词长度. 空间复杂度为O(lN).
Last updated
Was this helpful?